Probing a Polar Cluster in the Retinal Binding Pocket of Bacteriorhodopsin by a Chemical Design Approach

نویسندگان

  • Rosana Simón-Vázquez
  • Marta Domínguez
  • Víctor A. Lórenz-Fonfría
  • Susana Álvarez
  • José-Luís Bourdelande
  • Ángel R. de Lera
  • Esteve Padrós
  • Alex Perálvarez-Marín
چکیده

Bacteriorhodopsin has a polar cluster of amino acids surrounding the retinal molecule, which is responsible for light harvesting to fuel proton pumping. From our previous studies, we have shown that threonine 90 is the pivotal amino acid in this polar cluster, both functionally and structurally. In an attempt to perform a phenotype rescue, we have chemically designed a retinal analogue molecule to compensate the drastic effects of the T90A mutation in bacteriorhodopsin. This analogue substitutes the methyl group at position C(13) of the retinal hydrocarbon chain by and ethyl group (20-methyl retinal). We have analyzed the effect of reconstituting the wild-type and the T90A mutant apoproteins with all-trans-retinal and its 20-methyl derivative (hereafter, 13-ethyl retinal). Biophysical characterization indicates that recovering the steric interaction between the residue 90 and retinal, eases the accommodation of the chromophore, however it is not enough for a complete phenotype rescue. The characterization of these chemically engineered chromoproteins provides further insight into the role of the hydrogen bond network and the steric interactions involving the retinal binding pocket in bacteriorhodopsin and other microbial sensory rhodopsins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs.

The photocycle and vibrational dynamics of bacteriorhodopsin in a lipid nanodisc microenvironment have been studied by steady-state and time-resolved spectroscopies. Linear absorption and circular dichroism indicate that the nanodiscs do not perturb the structure of the retinal binding pocket, while transient absorption and flash photolysis measurements show that the photocycle which underlies ...

متن کامل

Tryptophan interactions in bacteriorhodopsin: a heteronuclear solid-state NMR study.

The bulky and amphiphilic nature of tryptophan residues makes them particularly interesting components of proteins. In bacteriorhodopsin, four of the eight tryptophan residues are in the active site, forming parts of the retinal binding pocket. In this work, we use solid-state NMR to study the interactions of the tryptophan residues in wild-type bacteriorhodopsin, in the resting state, and in c...

متن کامل

Evaluation of Immobilized Bacteriorhodopsin’s Function by Laser Irridiation

Bacteriorhodopsin (BR) is a retinal protein that is a light-driven proton pump and has an important role in photosynthesis in archaebacterium Halobacterium salinarum. The BR molecule absorbs light and photochemical changes occur in it, and different intermediates will be produced in its photochemical cycle that some of them like P and Q intermediates have a long half-life. There have been many ...

متن کامل

Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR.

Structural details about the geometry of the retinal chromophore in the binding pocket of bacteriorhodopsin are revealed by measuring the orientations of its individual methyl groups. Solid-state 2H-NMR measurements were performed on macroscopically oriented samples of purple membrane patches, containing retinal specifically deuterium-labeled at one of the three methyl groups along the polyene ...

متن کامل

Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin.

The planarity of the polyene chain of the retinal chromophore in bacteriorhodopsin is studied using molecular dynamics simulation techniques and applying different force-field parameters and starting crystal structures. The largest deviations from a planar structure are observed for the C(13)==C(14) and C(15)==N(16) double bonds in the retinal Schiff base structure. The other dihedral angles al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012